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This paper, the first in a series of three, outlines a novel approach to the description of 
polymer deformation in both rubbery and glassy states. The ability of affine models to 
predict stress-orientation-strain (SOS) relationships across a range of polymers in the 
rubbery regime is first reviewed, together with the application of the pseudo-affine model 
to the orientation-strain behaviour of plastically deformed glasses. An alternative 
strategy is then introduced, in which deformation of rubber or glass is resolved into an 
orientational component (associated with the alignment of individual chain units) and an 
extensional component (associated with the "unravelling" of the macromolecular chain). 
Both molecular orientation and overall strain are seen as aspects of the system's response 
to stress, but the relationship between them is not unique, being dependent on tempera- 
ture and the nature of the units making up the chain segments. 

1.  I n t r o d u c t i o n  

The deformation of materials can be studied either 
on a macroscopic or on a microscopic scale. The 
macroscopic approach is best exemplified by 
the familiar stress-strain test; the microscopic 
approach will concern local deformation processes 
on (at least initially) the scale of a few atoms or 
molecules. Stress-strain behaviour alone does not 
offer a complete characterization of the defor- 
mation behaviour of a non-crystalline polymer, 
either above or below the glass transition. However, 
one principal consequence of deformation will 
be the creation of some degree of alignment 
among molecular segments: such aligment can be 
quantified in terms of spherical harmonic param- 
eters and it will lead to anisotropy of properties. 
By attempting to measure the degree of molecular 
alignment as a function of stress or strain, one may 
obtain information about deformation processes 
on a microscopic scale. A comprehensive view of 
polymer deformation would encompass both 
mechanical (stress-strain) and orientation-strain 
behaviour, and would be applicable to polymers 
of differing molecular structure. Additionally, 

such a view should provide a framework for the 
description of deformation behaviour over a range 
of temperature above and below Tg. 

This series of papers presents a first step to- 
wards such a unified view. In this paper (Part t)we 
firstly survey the broad spectrum of-knowledge 
concerning the orientational behaviour of non- 
crystalline polymers in relation to mechanical be- 
haviour, and identify several features which call into 
question the common assumption of a direct rela- 
tionship between molecular orientation and strain. 
Secondly, we put forward an approach to polymer 
deformation above the glass transition which will, 
potentially, allow description of both mechanical 
and orientation behaviour. The proposed strategy 
involves the resolution of deformation into orient- 
ational and non-orientation components. 

In Part 2, we employ this approach as the 
basis of a simple deformation model, allowing 
quantitative description, at least to a first approxi- 
mation, of deformation processes; and in Part 3, 
we relate the "rubber-like" behaviour to plastic 
deformation below Tg, where strain rate (or in 
effect, time) becomes an important factor. 
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2. The outstanding questions 
2.1. The emphasis of established theories 
An early success of polymer science was the des- 
cription, in the 1940s, of the characteristic stress- 
strain curve of natural rubber (cis-polyisoprene) .  
Starting from the basic assumptions of a molecular 
network and that the deformation of the network 
points is affine (i.e. the points behave as though 
they were embedded in an elastic continuum), the 
entropy-driven elasticity of the material was 
modelled by the Gaussian statistical theory in 
terms of a single parameter equivalent to the num- 
ber N of macromolecular chain segments per unit 
volume. Further refinement within the framework 
of the so-called affine scheme of deformation 
involved the introduction of a second parameter n, 
the effective number of statistical links per chain, 
and predicted a maximum extension ratio for the 
rubber network, kraax = n 1/2, though at the cost 
of increased mathematical complexity. 

The affine statistical theory also proved useful 
in the analysis of the well-known phenomenon 
of rubbery photoelasticity, in which the preferen- 
tial alignment of chain segments gives rise to 
increasing optical birefringence (see Appendix). 

The foundations of rubber elasticity theory 
were therefore established prior to the post-war 
development of a wide range of synthetic high 
polymers. Many of these display rubbery mech- 
anical behaviour which is qualitatively similar to 
cis-polyisoprene,  although not necessarily in the 
same temperature range. In fact, some of these 
materials appear more amenable to analysis than 
natural rubber, by virtue of being better charac- 
terized (through their non-biological origin) and 
less susceptible to the complicating and conten- 
ious problem of strain-induced crystallization. 
Nevertheless, in the continuing theoretical develop- 
ment of rubber elasticity, experimental com- 
parisons have been made using data almost exclus- 
ively from natural rubber and its close relatives. 

In addition to the increasing availability of 
different polymers which behave as rubbers at an 
appropriate temperature, there has been the 
development of new methods for determining 
molecular orientation. Details of the techniques 
are given elsewhere [1-5],  and the folmalism by 
which orientation may be quantified in terms of a 
series of spherical harmonic parameters, rather like 
the Fourier components of a waveform, is sum- 
marized in the Appendix. 

*See A p p e n d i x  for  def ini t ions .  
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Theoretical predictions of the development of 
orientation with strain have traditionally been 
tested against birefringence data. For this reason it 
is useful to underline the limitations of this measure- 
ment of orientation when used alone: 

(i) it yields only the first term in the spherical 
. . . .  a: harmomc senes(blrefrmgence (P2(cos ~)) );other 

techniques can yield more, with wide angle X-ray 
scattering able, at least in principle, to give any 
term in the series. 

(ii) it yields only a relative measure of (P2 (cos 
~b)), since an accurate value for the birefringence 
which would correspond to complete molecular 
orientation (the intrinsic birefringence) is both 
experimentally and theoretically inaccessible. 

(iii)it is difficult to separate the measured 
birefringence into the component due to orienta- 
tion of the molecular chains, and the component 
(significant at high stresses) resulting from elastic 
distortion of both the local conformation and the 
chain packing by the applied stress. This latter 
component is referred to as "elastic birefringence" 
and corresponds to the pre-yield birefringence seen 
in polymer glasses which is not associated with 
chain orientation [6]. 

It is thus important, when endeavouring to 
analyse orientation behaviour, to take a broader 
view than that afforded by photoelasticity per  se. 

2.2. Predictions of affine and pseudo-affine 
schemes 

Fig. 1 shows stress-strain data for natural rubber, 
fitted by one of the affine but non-Gaussian models 
for rubber elasticity. An "n" of 75 links per 
chains segment has to be assumed if the observed 
maximum strain is to be equal to n 1/2 as the 
elementary theory requires. The value of the 
"rubber modulus", NkT, is chosen to give the best 
fit at intermediate to high strains, though this 
gives rather too low an initial slope and neglects 
the influence of crystallization at high strains. 

The birefringence-strain plot for natural rubber 
(Fig. 2) exhibits the pronounced curvature pre- 
dicted by affine models. Quantitative comparison 
with the affine prediction for (P2) against strain 
is difficult, however, since a value for intrinsic 
birefringence A/I o (corresponding to (P2)= 1) 
must be estimated. The Gaussian form of the 
affine scheme predicts that at the limiting strain 
of ~. = n I/2, the birefringence A/I should be given 
by: 
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Figure I Nominal stress-strain curve for the James-Guth 
3-chain affine model, fitted to experimental data of 
Treloar [7] (o), after Treloar [8]. The parameters n = 75, 
N k T =  0.273 MPa have been chosen to fit the data at 
high strains: this results in a rather poor fit for ~ < 3. 

Ap = (P2) = 1 
n o  7n (n - 1/n ''~) 

0.2 for large n. 

This limit of  0.2 is greatly increased if  a non- 
Gaussian model  is chosen, so that  estimation of  

2x/ao by extrapolat ion is impracticable,  while calcu- 
lated values such as Treloar's 0.28 [9] involve 

rather severe approximations.  The choice of  a 
smaller A/~o implies that a smaller n is required to 
fit the data, and Treloar himself  uses the case 
n = 25 for comparison of  the various theoretical 
affine models available [8]. The predicted (/~ 
against ~ curves for such models are dependent  
solely on n. 
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Figure 2 Birefringence against extension ratio for natural 
rubber at 25 ~ C, after Treloar [9]. 
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Figure 3 Number of links per affine chain, n, against 
strain for PET drawn at 80 ~ C: �9 Purvis and Bower [10] 
(laser-Raman spectroscopy, 1616cm -1 line), confor- 
mational model "A"; z~ ibid., conformational model "B"; 
c~ Cunningham, Ward, Willis and Zichy [11] (ix. spectro- 
scopy); o Nobbs, Bower, Ward and Patterson [12] (polar- 
ized fluorescence, assuming "'model 1" for the optical 
behaviour of the fluorescent molecule and converting to 
<P2) for the PET by means of Fig. 1 of Nobbs et al. [ 13 ]). 

Some uncertainty is indicated, then, in reconcil- 
ing the mechanical and the orientational pre- 
dictions of  the affine deformation scheme, and the 
difficulty is highlighted by studies of  polymers 
better  characterized than natural rubber. These 
have the advantage that absolute values of  (P~), 
rather than simply birefringence measurements, 
are available. Such data, when plotted as an 
or ien ta t ion-s t ra in  curve, show less evidence of  the 
upward curvature characteristic of  natural rubber: 
the affine scheme can consequently fit the data 
only if n is permit ted to vary with strain. As an 
example, Fig. 3 shows the required variation of  n 
for PET and Fig. 4 a similar plot  for PMMA. We 
note that at low strains the necessary n is small. 

In the case of  the PMMA data (Fig. 4), the 
value of  n at zero strain is close to one, which 
prompts consideration of  a situation where there is 
only one link per chain, so that molecular segments 
essentially orient as rigid rods. Such behaviour 
would be accompanied by a very rapid develop- 
ment of  orientat ion as measured by <P2)(similar 
to that seen in polymer glasses at low strains). It 
can be described by  the pseudo-affine deformation 
scheme [16] first introduced by Kratky [17] in 
connection with the orientation of  crystallites in a 
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Figure 4 "n" against strain for PMMA from WAXS data. 
Tg is approximately 105 ~ C. o 125 ~ C, plane strain com- 
pression (Pick et al. [6]); �9 150 ~ C, plane strain com- 
pression (Pick et al. [6]); A 150 ~ C, uniaxial tension 
(Brown and Mitchell [14]). The measured strains at 
150 ~ C will include some element of irrecoverable plastic 
flow. This amounted to some 12% of true strain at h = 
4.3 [15]. 

non-crystalline matrix. The scheme considers an 
aggregate of transversely isotropic, rod-like units 
embedded in a .continuum, and the axes of these 
units are assumed to rotate on deformation in the 
same manner as lines joining pairs of points in a 
body which (on the scale of  the rods) is deforming 
affinely (easily visualized as rigid needles in an 
affinely deforming haystack). 

Some success has been achieved by the pseudo- 
affine scheme in describing the shape, if not the 
scale, of  the (P2) against strain curve for polymer 
glasses [1,2, 16, 18]. However, like the affine 
scheme of which it is, in essence, a special case, it 
is limited by the assumption of a unique relation- 
ship between orientation and strain, so that no 
further advance is afforded in interpreting the 
temperature dependence of the experimental 
orientation-strain relationship, or differences in 
the annealing and recovery behaviour of orientation 
and strain. Indeed, it in a sense leaves one worse 
off, since one can no longer argue in terms of a 
temperature-dependent n as has been possible in 
the affine case [19, 20], for n has been fixed, for 
better or for worse, at 1. 

2.3. T h e  inf luence o f  t e m p e r a t u r e  
Despite the paucity of  data, it seems clear that 

there is a very considerable temperature depen- 
dence of the orientation-strain plot. The slope 
of the (P2)-strain curve increases rapidly with 
falling temperature, with a gradual transition to 
the decelerating (P2)-strain curve characteristic 
of the glassy state (Fig. 5). 

The statistical theory for rubber does not direct- 
ly predict any such temperature dependence: it 
implies that orientation is solely a function of 
strain. The observed variation has therefore to be 
interpreted in terms of changes with temperature 
of the effective size of the "statistical random 
link", and hence of the number of links per chain. 
However, as is exemplified by Figs. 3 and 4, the 
required n would have to be rapidly varying and, 
near the glass transition, very small indeed at low 
strains. 

2.4. Annealing and stress relaxation 
Information about orientation-deformation rela- 
tionships can be provided by annealing. Brady and 
Yeh [22] annealed cold-drawn PC below Tg for 
several days, and a series of flat-plate X-ray photo- 
graphs showed a loss of most, if not all, of  the 
equatorial arcing indicative of orientation. How- 
ever, only 28% dimensional recovery occurred; the 
remaining 72% recovery was not achieved until the 
sample was reheated above Tg. Similar results [23] 
were obtained for atactic PS and PMMA. The PS 
displayed recovery of 27%, and the PMMA 22.5%, 
of the cold-drawn deformation. Again, complete 
loss of the X-ray orientation is claimed, although a 
series of flat-plate photographs is hardly the most 
precise measure of this parameter. Birefringence 
was measured for PS only; it recovered below Tg 
to the extent of 57%. 

Brady and Yeh use these observations to support 
Yeh's proposed structural model for glasses, con- 
sisting of "ordered domains" separated by regions 
of  more random chain configuration. The partial 
strain recovery is attributed to short-range reorgani- 
zation in the latter region without the longer-range 
reorganization necessary for domain motion. 
Without judging this theory, we can at least infer 
that there appear to be two components to the 
deformation behaviour, one of which is associated 
particularly with molecular orientation, and is 
more readily able to undergo recovery. 

Kahar e t  al. [20] also annealed PMMA, oriented 
by hydrostatic extrusion in the glassy state, at 
temperatures between the deformation temperature 
Td and Tg. Partial strain recovery was observed: 
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Figure 5 The development of molecular 
orientation during the plane strain com- 
pression of PMMA at different tempera- 
tures: + 20 ~ C; �9  40 ~ C ; �9  60 ~ C;X 80 ~ C; 
o 100 ~ C; �9 125 ~ C; v 150 ~ C. The par- 
ameter fzy is closely related to (P2 (cos 
~)>. (after Windle A.H., in Ward [21 ]). 
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even at 105 ~ C, of ten  taken as Tg for PMMA, only  

70% recovery was observed after some 2 days. 

Upon  anneal ing above Tg, complete  recovery 

of  strain and birefringence occurred.  Birefringence 
at first recovered more  rapidly than  strain (Fig. 6), 
which again indicates that  an or ientat ion-related 
componen t  of  deformat ion  is more  susceptible to 

recovery than  the remaining deformat ion.  
If  anneal ing is carried ou t  at constant  length, 

the shrinkage force can be measured:  Kahar et  al. 

found  that  the  force decayed from an initial  peak 
to a f inite l imit  with t ime. Two comparisons were 

made:  
(a) same strain, different  Td and hence bire- 

fr ingence: the more  birefr ingent  specimen gave a 
higher peak force, bu t  the l imiting force was 

unchanged.  
(b) same birefringence,  different Td and hence 
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Figure 6 Recovery of PMMA on annealing at 116.5 ~ C, 
after Kahar et aL [20]. Residual birefringence and stiain 
are expressed as fractions of the as-deformed values 
T d = deformation temperature. �9 T d = 50 ~ C; �9 T d = 
90 ~  ~ 
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strain; the peak was unchanged, but the greater 
strain led to a higher limiting shrinkage force. 

Kahar et  al. interpret the finite limiting force 
in terms of a permanent entanglement network. 
However, whatever the detailed conclusions, their 
results again suggest the association of orientation 
with a particular component of deformation. 

Somewhat similar shrinkage force measurements 
have been performed on PET [13, 24, 25]. While 
these may be viewed similarly to those for PMMA, 
the intrusion of crystallization makesthebehaviour 
considerably more complex. 

2.5. Stress, orientation and strain 
The phenomena examined so far suggest that 
neither the affine nor the pseudo-affine defor- 
mation scheme is fully adequate to describe the 
interplay between stress, strain and orientation, if 
a broad spectrum of chemically or mechanically 
cross-linked polymers is to be considered. The 
unique relationship between orientation and strain 
implied by both schemes is called into question by 
experiment, while (P2)-strain data can be des- 
cribed by the affine scheme only by assuming that 
the equivalent random chain varies in a manner 
difficult to reconcile either with stress-strain 
experiments or with the fundamentally statistical 
nature of the theory. 

Of course, the affine model traditionally finds 
support from natural rubber data, some of which 
are very well established indeed. However the 
support is stronger regarding the stress--strain than 
the orientation-strain relationship: the particular 
difficulties associated with the use of birefringence 
as a measure of orientation have been discussed 
above. 

3. The need for an alternative approach 
If a view of deformation is to be developed which 
has the potential to deal in general terms with 
the interrelation of the three parameters - in 
other words, to describe stress-orientation-strain 
relationships - then one must re-examine some 
assumptions of the established theories, and 
adopt a somewhat less restrictive basis than the 
unique strain-orientation connection which is 
implicit in the affine and pseudo-affine schemes. 
To be comprehensive, such a view will on the one 
hand have to encompass both mechanical (stress- 
strain) and orientational aspects of deformation, 
without making the assumption of an automatic 
and unique connection between orientation and 

strain. On the other hand, it should also shed some 
light on the changes in behaviour which become 
apparent as we move towards and through the 
glass transition - changes with which the affine 
approach to rubbery deformation is not able to 
deal. 

With these aims in mind, it is proposed to adopt 
a strategy which views both overall strain and 
molecular orientation as aspects of a polymer 
system's response to the stress field imposed upon 
it. We think in terms of a small section of the 
macromolecular chain - small enough to be taken 
as a rigid unit - and consider the effect, in terms 
both of orientation of the unit and of consequent 
strain, of the applied stress acting through the 
unit's immediate environment (including, o f course, 
forces transmitted along its own chain). By this 
approach we relate the behaviour of an individual 
molecular unit directly to the applied stress: we 
thus link stress and orientation, without using 
macroscopic strain as an intermediary. A model 
based upon this idea will then be distinctive in 
taking stress, rather than strain, as the primary 
variable for the analysis of deformation. 

4. A two-component strategy 
As an alternative basis for the description of 
deformation, it is proposed to adopt a strategy 
based on the resolution of deformation into an 
orientational and a non-orientational (or exten- 
sional) component. 

There are several reasons for adopting this 
approach. The first is the very different nature 
of the orientation-strain plots in the rubbery and 
glassy states. A difference in orientation-stress 
behaviour might be explained in terms of a single 
deformation process, subject to stress-driven 
thermal activation and requiring a greater "driving 
force" at lower temperatures. The different nature 
of the orientation-strain plot, however, compels 
one to consider a situation more complex than a 
single process responsible for both orientation and 
strain. 

The second reason is the annealing and recovery 
work discussed above. This requires one to 
"decouple" orientation from strain to some 
degree, and to conclude that molecular orientation 
is more readily susceptible to recovery near to Tg 
than is overall strain. 

The third reason arises from recent interest in 
the achievement of very high chain extensions. 
This has been associated with work on extensional 
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Figure 7 Systems displaying complete chain orientation: 
(a) fully extended chains, (b) chain folded crystaUites. 

flow, crystallization from oriented melts or 
solutions, and the production of high modulus 
fibres (see the reviews of Keller [26] and of 
Ciferri and Ward [27]). It has become clear that 
the achievement of certain properties requires 
chain extension per se, quite apart from chain 
alignment. This is particularly true of very high 
elastic moduli, where extension is necessary in 
order to obtain a high degree of chain continuity 
along the axis direction [28]. Fig. 7 illustrates the 
point schematically. The two systems shown both 
display, in effect, complete orientation (all (P2,) = 
1), but their mechanical properties will be radically 
different: for example (a), comprising fully 

extended chains, will have a much greater elastic 
modulus in the chain direction than (b), which can 
be regarded as a fibre composed of chain-folded 
crystaUites. 

The idea of separating out an orientational 
component of deformation, with its associated 
orientation distribution function, is closely related 
to the proposal of Dobson and Gordon [41] that 
chain segments containing only one or two bonds 
should be regarded as "orientationally active" with 
end-to-end vectors capable of changes in direction 
but not in magnitude. A comparison may be made 
with the mathematical formalism proposed by 
Hsiao and Moghe [29]. However, they do not 
apply this approach to any specific deformation 
model, or to the orientational behaviour of real 
polymers. 

We consider, then, the effect of an applied 
stress field on an assemblage of anisotropic units. 
We may envisage two ways in which the units can 
allow the stress to do work, with a consequent 
macroscopic strain. They may undergo rotation, 
leading to a preferential unit orientation, but with 
no change in the disposition of nearest neighbours 
around a given unit; or they may respond by a 
bodily shift of their centres of gravity, while main- 
taining a fully random orientation distribution. 
Each mechanism contributes a component of 
strain. Fig. 8 illustrates the two cases. 

(a) 

orient.alionctt 
strain 

(b) 

extensional 
strain 

> 

Figure 8 (a) Schematic representation of the 
orientational component of deformation. 
(b) Schematic representation of the exten- 
sional component of deformation. 
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Figure9Two-mode strategy: the two extreme cases. 
A, undeformed chain; B, ofientafional deformation mode 
only; C, extensional deformation mode only; D, fully 
extended chain after both modes have operated. 

In a real solid, of course, there must be some 
constraint on the movement of any structural 
unit: if there were none, the situation would be 
one of liquid-like flow. Firstly, the units will be 
strung together into macromolecular chains, which 
will restrict the relative motion of units belonging 
to the same chain. Secondly, steric interaction 
between segments of neighbouring chains will 
demand some degree of co-operation in the move- 
ment of adjacent units. Thirdly, the presence of 
cross-links - whether inter-chain covalent bonds 
or mechanical entanglements - will further limit 
the relative motion of units, most significantly by 
imposing a maximum attainable extension and 
thus preventing true liquid-like viscous flow. 

These sources of constraint, and the need for 
a degree of co-operative unit movement which 
they impose, will mean that the orientational and 
extensional components of deformation will in 
practice take effect simultaneously. Nonetheless, it 
is instructive to consider the two limiting cases 
(Fig. 9). We start with a macromolecule in, for the 
sake of argument, a random coil configuration: it 
may be depicted as a random chain containing n 
links (denoted A). Let the individual links rotate 
so as to become aligned in some unique direction: 
this will lead to a configuration such as B, with 
complete orientation of all the links, but maintain- 
ing several reversals of direction. If the oriented 
chain is now "untwisted" about these reversal 
points, we obtain the fully extended chain D. 
Alternatively, we can do the "untwisting" first, to 
give the unravelled chain C: although we have 

produced some strain, there is no tendency to link 
alignment (given the reasonable assumption that 
links in the chain are non-polar). Subsequent link 
alignment again gives the fully extended chain D. 

These two "limiting cases" - two routes from 
random coil to fully extended chain - thus illus- 
trate the separation of the two components of 
strain. Stages A-B  and C - D  represent orienta- 
tional deformation, while stages B-D and A-C  are 
purely extensional, involving no change whatever 
in the orientation distribution function for the 
links of the chain. The response of an assemblage 
of anisotropic units to the applied stress acting 
upon each unit through its environment is not 
seen, therefore, as primarily a consequence of the 
fact that units belong to molecular chains. Rather, 
the role of the chain is in suppressing relative 
motion of individual units, so that the orientational 
component of strain becomes significant without 
extensive and rapid viscous flow occurring at the 
same time: thus the assemblage behaves as a solid. 

5. Summary 
The primary objective of this work is to understand 
why links of the molecular chain align much more 
rapidly per unit plastic strain in the glassy state 
than in the rubbery state. A profound difference 
in deformation mechanism is implied, yet in each 
case the structure at the limiting strain of com- 
paratively well aligned molecules appears the same, 
and indeed a plastically deformed glass warmed to 
above its Tg is able to assert its entropic elasticity 
and spring back into its original shape. 

We have set out to describe the behaviour of a 
polymer in either the rubbery or the glassy state 
by resolving the deformation into two components, 
one involving the alignment of the chain links with 
the tensile axis (the orientational component) and 
the other involving the unravelling of the chain. 
The latter component is not associated with 
alignment. The value of this artificial separation 
into two components arises from the association 
of the extensional component with longer range 
adjustments in the disposition of chain segments 
than those associated with the orientational com- 
ponent. Below the glass transition, where thermal 
activation becomes a limiting factor, one may 
expect the longer range component of deformation 
to be suppressed in relation to the orientational. It 
is this feature which imparts to the two-component 
approach the potential ability to account both for 
the pronounced differences in orientation-strain 2004 



relationships above and below the glass transition, 
and for the differing rates at which measured 
orientation and overall strain relax in the vicinity 
o f r g .  

A model which can describe differences between 
deformation in the rubbery and glassy states 
qualitatively may be of interest, but if it is not 
able also to account for both rubbery and glassy 
behaviour quantitatively it will be of  little real 
value. This is perhaps particularly important in 
regard to rubber elasticity, where well-established 
chain statistical theories have been developed in 
detail. 

A first step in testing the two-component model 
- based on the approach set out above, and 
developed in detail in Part 2 - must be to examine 
its ability to predict both the stress-strain 
behaviour characteristic of rubbery elasticity, and 
the observed development of molecular orienta- 
tion as a function of stress or of strain. 

It is clear, that in viewing rubber as a state of 
matter rather than the secretion of a tree, one 
should look for data from as wide a range of 
examples of the rubbery state as possible. How- 
ever, the most studied rubber is natural rubber 
(cis-polyisoprene) itself, and data on other rubbers 
which relate stress, strain and orientation are very 
rare indeed. A consequence of reviewing the 
stress-orientation-strain (SOS) data which do 
exist is the indication that to take natural rubber 
as the archetype of the rubbery state is perhaps 
misleading. The theories developed to account for 
the SOS behaviour of natural rubber are elegant in 
that they require few structure-related constants. 
However the existing theories only give satisfac- 
tory predictions for PMMA and non-crystalline 
PET, behaving as rubbers, if the structure-related 
constants vary with strain, as is illustrated by the 
n -- X plots of  Figs. 3 and 4. 

The comparison of the SOS relationship by the 
new model with those observed experimentally is 
thus not straightforward, for one has to decide 
whether to select data for, say, natural rubber 
alone, or whether to accept predictions which lie 
generally in the range of data for different rubbers. 
If the model is able to give even a broad prediction 
of a wide range of observed rubber behaviour, then 
it will be worthwhile to apply it to the glassy state 
for further testing. However, the detailed com- 
parisons with the rubber data which are made in 
Part 2 in fact reflect significantly on existing 
theories based on the concept of affine chains. 

Appendix: The description and analysis 
of chain orientation 

The purpose of this appendix is to review in out- 
line the established work which relates orientation 
of chain segments to parameters such as strain. 
In doing so, the methods for description of orien- 
tation which will be used in the two subsequent 
papers are also introduced. 

The description of orientation 
A first requirement is to define some quantitative 
measure of orientation. In the most general case, 
we would consider an orthogonal set of axes fixed 
in the appropriate structural unit, and describe the 
orientation of the latter in terms of three Eulerian 
angles. These represent three successive rotations 
necessary to bring the axes into coincidence with a 
reference set fixed in the macroscopic specimen. 
Such a description of orientation is general but 
complicated. Fortunately, we can often introduce 
considerable simplification by assuming that, upon 
deformation, there is no tendency to alignment in 
a plane perpendicular to some particular direction 
(typically the draw direction for a fibre), i.e. that 
we have transverse isotropy. An associated assump- 
tion on a molecular level is that there is no ten- 
dency to alignment of any structural axes or 
"directors" other than those representing the back- 
bone chain axes. It may be assumed that under 
uniaxial tensile stress these directors tend to align 
parallel to the direction of stress, so that we can 
equate the unique molecular axis to the "labora- 
tory axis" corresponding to the draw direction. 
Such an assumption is usually applicable to non- 
crystalline polymers: it does not, of course, require 
that the molecular chain itself has cylindrical 
symmetry. 

The uniaxial simplification allows us to describe 
orientation in terms of an orientation distribution 
function (ODF) p (q~), where ~ is the angle between 
a director and the reference axis. We have 

f0 J ( )sin d  = 1 (A1) 
The factor sin~ arises from the "degeneracy" of 
~b: i.e. the fact that if each director can choose its 
direction about the axis at random, the probability 
of q~ taking some particular value will be propor- 
tional to sin ~. 

One method of representing p(q~) is to draw a 
three-dimensional representation surface with the 
radius in a direction given by q~ corresponding to 
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Figure 10 Spherical harmonics P2 n( cos O) against 0. 

the magnitude of p(~b) in that direction. For 
uniaxial "fibre" symmetry such a surface would 
be an ellipsoid of revolution, something like a 
rugby ball. We could transfer the information to 
two dimensions by means of a stereographic 
projection with suitable contours, i.e. a pole 
figure, but a more powerful technique is to express 
p (q~) as a series of spherical harmonics, in terms of 
the Legendre polynomials, Pn. These have the 
advantage of orthogonality (that i s, we can change 
one harmonic without necessarily changing the 
others), and analysing the "rugby ball" in terms of 
spherical harmonics is analogous to analysing a 
wave into its Fourier components. We require only 
the Legendre polynomials of even order in cos q~, 
and the first few are: 

Po(x) = 1 (A2) 

P2(x) = } (3x ~ -- 1) (A3) 

P4(x) = ~ (35x 4 - -30x 2 + 3) (A4) 

/~ = 1~ (231x 6 -- 315x4 + 105x 2 -- 5) 

(as) 

Their relationship to ~ is shown in Fig. 10. We will 
denote mean values of the even order Legendre 
polynomials by (P2n(cos ~b)). For a random distri- 
bution all the (P2n) are zero, while for complete 
alignment along some unique axis all take the 
value 1. Higher order polynomials may be obtained 
by using the recurrence relation 

P,(x) = _1 [(2n - 1) x x x P,_l(x) 
n 

-- (n -- 1) x Pn_2(x)] (A6) 

It can then be shown [30] that the distribution 
function is 

P(q~) = L 2(n + 1/2) x (Pn(cos q~)) 
r~ =0 

• r (h7) 
and that the individual polynomials are given by 

<e.(cos = p (~b)Pn(cos ~b) sin ~b d~b 
"O 

(A8) 

It will be usually be sufficient for the analysis 
of predicted orientation or of experimental data 
to consider values of the low-order Legendre poly- 
nomials rather than the full orientation distribution 
function given by Equation A7. 

The use of the (P2n) has the further advantage 
of allowing description of successive "levels" of 
orientation. Suppose for example that molecules 
are partially oriented within some microscopic 
domain, and that the domains are themselves 
oriented with respect to some reference axis (we 
assume that both distributions are uniaxiaUy 
symmetric). Then for the overall orientation as 
measured experimentally, each (P2n) will be given 
by the product of the (P2n) for the orientation of 
the molecules with respect to the domain axis, and 
the (P2n) for the orientation of the domain axes 
themselves with respect to the reference axis. 

Experimental techniques available for orienta- 
tion measurement will yield the required mean 
values of cos 2" ~b. The oldest, conceptually simplest, 
and certainly the most colourful technique is that 
of optical birefringence, which formed the basis 
of the historical development of the rubber photo- 
elasticity theory summarized below. However, it 
yields only (cos2~): (cos4~) and higher even 
powers are accessible by other methods, with wide 
angle X-ray scattering (WAXS) able in principle 
to yield any required even power and hence any 
(P2n). The chief techniques have been reviewed 
[1-5].  

Af f ine  deformat ion:  rubbery 
photoelast ic i ty 
The historical starting point for orientation 
studies is the optical anisotropy or birefringence 
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of natural rubber, first analysed by Kuhn and 
G r ~  [31] using a method closely related to their 
treatment of chain elasticity. The theory is set out 
in detail by Treloar [8]. 

We first recall that the polarizability of a medium 
is defined as the induced dipole moment per unit 
field strength. We denote polarizability by 3' for 
one "random link", by p for a single chain, and by 
B for the whole network; the subscripts 1, 2 
indicate "axial" and "transverse" directions. 

Kuhn and Grfin show that the polarizability 
anisotropy for a freely jointed random chain of 
vector length r, comprising n links of length l, is 

( 3tint ) (A9)  
Pl--P2 = n(3"1--')'2) 1 .~_a(r/nl ) 

This is the same for all chains (under affine defor- 
mation) since it depends only on the ratio r/nl. 
The term in the square brackets, containing the 
inverse Langevin function -g~-I (x), varies between 
0 and 1 : Treloar calls this the relative chain aniso- 
tropy. It can be expanded as an infinite series in 
(r/nl): 

Pl - -P :  = n ('),1 -- ')'2)[9 (r/nl) 2 

+ (r/nO" + (r/nO 6 +...] (A10) 

Taking the first term in such an expansion is 
analogous to using the Gaussian approximation 
for chain entropy, and gives: 

Pl --P2 = (3/5)n(3'1 -- 3"2)(r/nl):. ( a l  1) 

For an isolated chain this will give a value of 
(315)('),1--7:), i.e. 3/5 of the anisotropy of a 
single link. 

Kuhn and Griin then consider a Gaussian 
network containing N chains per unit volume, 
with their end-to-end vectors (r-vectors) at first 
distributed randomly in direction. The polari- 
zabilities of the network, with respect to the 
principal axes of strain, are found by integration 
over all chains. The principal polarizabilities must 
then be converted to principal refractive indices 
r its: in making this conversion Kuhn and Grtin 
assume that the mean square end-to-end distance 
of the chains in the network is nl 2 (just as for a 
set of  free chains) and, in effect, that the differ- 
ence in refractive indices is small in comparison to 
their mean. They obtained the polarizability- 
refractive index relationship: 

47r 6/ao 
T ( B 1  " B 2 )  - (it2 _{._ 2)2 X (/,.11 --/'/2) (A12) 

where it0 is the mean refractive index, given by 
~(itl + 2.u2). The orientation parameter (Ps) is 
simply the difference in polarizabilities, nor- 
malized by dividing b y  the theoretical total 
polarizability if all the links in the network could 
be aligned: 

(1'2) = (B1--Bs)/Nn(%--3'2) (A13) 

so that for practical purposes, (Ps) will be propor- 
tional to the birefringence ( # 1 - i t s )  so long as ito 
remains constant. Tre loar  calls (P~) the" optical 
orientation factor: it is also sometimes termed the 
Hermans orientation function. 

Kuhn and Grtin's exPression for orientation 
birefringence as a func t ionof  the uniaxial exten- 
sion ratio ~ is: .~ 

2,r (it~ + 2 )  a 
]21 --~2 = : -  X 

45 #o 

x N(3'1 -- ')'2) (?~: -- 1/?,) (A14) 

or in terms of (Ps): 

1 
(P=) = ~n(~ 2 -- 1/?,) (A15) 

The limiting extension ratio under affine con- 
ditions is n 1/:, so that (/2)corresponding to this 
limit tends to 1/5 as n becomes large. 

The result of  Equation A14 was used by Tre- 
loar [9] in conjunction with the stress-strain 
relationship derived from the simple statistical 
theory of rubber elasticity to give a linear relation- 
ship between birefringence and true stress: 

it1--it: = C(o l - -o : )  (A16) 

where al ,  02 are the appropriate principal stresses, 
and the strain-independent constant C - the stress- 
optical coefficient - is given by 

2rr (itS) + 2) a 
C - • - -  ('),1 --3 ' :)  (A17) 

45kT ito 
The treatment set out above can be extended 

to non-Gaussian networks by taking more than 
one term in the expansion (Equation A10); Kuhn 
and Grtin themselves went on to take three terms. 
Other workers [32, 33] follow a similar method 
but with slightly different assumptions: for 
example, Trel0ar [32] modifies the Kuhn-GriJn 
model by assigning the "free chain" mean square 
value of r to all chains in the network (rather than 
using a distribution of r), which means in effect 
that he assigns smaller coefficients to the second 
and higher terms in the series expansion. 
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Treloar [32] also quotes an empirical closed 
series expansion of the relative chain anisotropy; 
it is accurate to better than 1% over the entire 
range of r/nl, and is a convenient alternative to 
Equation AIO: 

1 3r/n_______~l A ~ (r/nl)2 + ~ (r/nl)4 + ~ (r/nl)6 
.~- ' (r /n l )  (A18) 

All these attempts at describing non-Gaussian 
behaviour lead to a (/~ against strain plot which 
exhibits a faster upward curvature than the 
Gaussian case, while the birefringence-true stress 
relationship becomes both non-linear (approaching 
an asymptotic limit at high stresses) and depen- 
dent on n, the number of links per chain. Such 
attempts are still very approximate since they 
consider a set of chains of equal length, for, as 
Treloar [8] points out, a distribution of chain 
lengths (i.e. of n) should be considered. 

A broader view of or ientat ional  
deformat ion 
It is impossible to characterize a distribution of 
some quantity fully by specifying only one scalar 
parameter. While (/~ is sometimes used as a sole 
"order parameter" for oriented systems, the 
ambiguity this leaves can be illustrated by the case 
(P2(cosr = 0, which can correspond either to 
completely random orientation, or (among other 
things) to a situation where r = 54.736 ~ for all 
units*. 

In view of this ambiguity it is perhaps unfor- 
tunate that the nature of birefringence, as the 
most important technique historically, has con- 
centrated attention only on (P2 (cos r given by 
the fractional birefringence z34a/z2gto. Although 
(P2) is the most accessible orientation parameter 
both experimentally and by calculation, it gives 
only the first term in the ODF. The question of 
exactly how much we do know about the overall 
form of the ODF, when we have measured only 
the first one or two spherical harmonics, con- 
stitutes an interesting problem. It has been con- 
sidered in detail by Nomura et al. [34, 35] and by 
Bower [36]: we may summarize the situation by 
saying that high order terms tend to be both small 

and experimentally inaccessible, but that a con- 
sideration of at least (P4) is highly desirable. 

To obtain expressions for the orientation func- 
tions of order higher than two we employ the 
useful properties of spherical harmonics. Consider 
a network of random chains subjected to uniaxial 
deformation, e.g., by fibre drawing. The individual 
links of each chain will be uniaxially distributed 
about the r-vector, and we can describe their dis- 
tribution by an ODF involving the usual series of 
spherical harmonics, P2n(COS 4)- Here we use ff to 
denote the angle between a link and the r-vector. 
However, we also have a further "level" of orien- 
tation: the r-vectors will themselves be uniaxially 
distributed about the draw direction, with a dis- 
tribution function involving a second series of 
spherical harmonics, P2,(cos ~), where ep is the 
angle between an r-vector and the draw direction. 
According to our introductory consideration of 
spherical harmonics, we should now be able to 
find the overall orientation parameters by simply 
multiplying those for the two underlying dis- 
tributions: 

(e2n(COS ~)) = (P2n(COS 4)) X (e2n(COS ~)) 

(A19) 

(where as usual q~ is the angle between an individual 
link and the macroscopic draw direction). 

In practice the situation is not quite this simple, 
because any average involving ff will itself be a 
function of our other variable dp. We have there- 
fore to perform an integration (actually, we are 
convoluting the two distributions): 

(P2n(cos q~)) = (P2n(COS 4)) x P2,(cos ~) 
0 

x D((I)) d(I) (A20) 

Here D((I))dq) represents the fraction of r-vectors 
which lie at angles in the range (rp to (I) + d(I). To 
carry out the integration we must first express 
(P2n(COS 4)) in terms of 4p; for this purpose it is 
useful to make the abbreviations 

t = r/ml (A21) 

/3 = . ~ - ' ( t )  (A22) 

where r and l have their usual meaning, and to 

*This is not as unlikely as it sounds. Many experiments do not measure the orientation of the main chain directly, but 
make use of the dipole moment associated with some sidegroup. Imagine a situation where the main chains were com- 
pletely aligned, but had sidegroups)at some fixed angle to the backbone axis. If this angle were nea~r 54.7 ~ the param- 
eter (P2 (cos q~)) could remain near zero, notwithstanding the main chain alignment. 
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avoid confusion the number of  links per chain is 
denoted by  m. �9 and t are related by: 

)2 
t 2 = m[cos2a; + )`3( 1 _ cos2q~)] (A23) 

Then, following Roe and Krigbaum [37] and 
Nobbs and Bower [38]: 

(Po(cos if)) = 1 

(P2(cos if)) = 1 --  3t//3 

(P4(cos if)) = 1 --  lOt~~3 + 35//32 --  15t//33 

(P6(cos 4)) = 1 --21t//3 + 189//32 --  1260t//33 

+ 3465//34 -- 10395t//3 s (A24) 

Secondly, we need an expression for D(cb)de;. It is 
convenient to express this too in terms of  cos (b, so 
that, following Kuhn and Grtin [31 ]: 

)`3 d(cos a;) 
D(cos Or) d(cos ~ )  = 2 [cos 2 �9 + )`3 (1 --  cos 2 ~)] 

(A25) 

Using Equations A23-A25  and our usual expres- 
sions A2 et seq. for P2n(X) we can tackle the 
integral A20, expressed in terms of  cos q~ as: 

f~ (P2n(COS if)) x P2n(COSCb) 0~ ~) )  ~--" 1 

x D(cos q~) d(cos qS) (A26) 

With the aid of  a computer we can evaluate this 
integral for any (P2n(COSq~)). Analytical solutions 
are possible, though laborious: Roe and Krigbaum 
[37] calculate (P2), (/~ and (P6) for Treloar's 
modified (non-Gaussian) Kuhn-Grt in  model, using 
three terms of  the expansion A10. Nobbs and 
Bower [38] show that better results are obtained 
using the alternative expansion AI8 :  Fig. 11 (solid 
lines) shows the behaviour of  (P2) and (P4) for 
a 25-1ink chain, using the Nobbs and Bower 
equations. The latter are reproduced in Fig. 12. 
Several characteristic features are to be noted: 

(i) the gradient of  (P2) against )` increases with 
strain: orientation develops slowly at first because 
the end-to-end length of  the chain is very much 
less than its contour length. There is "plenty of  
slack in the chain". It is therefore possible to 
extend the chain greatly, by changing its confor- 
mation, without bringing in much alignment of  the 
links. Later, however, as we "take up the slack", 
the random links become more closely aligned 
with the end-to-end vectors, and further defor- 

1.0 

(P2n) 

~k= D 1Iv 

i 

X 6 

Figure 11 Orientation against extension ratio for a network 
with 25 links per chain (after Nobbs and Bower [38]). 
Dashed lines represent Nobbs and Bowers "mathematical 
device" to go beyond the affine limit h = n ~2 . 

mation is accompanied by a more pronounced 
increase in (P2). 

(ii) At all strains up to )` = n 1/2, (P4) is very 
small compared to (/2),  although the gradient 
again increases with )`. 

(iii) The "upturn"  in both parameters is associ- 
ated with limiting network extensibility: it will 
clearly come into play at lower strains for lower 
values of  n, and at any given strain the (P2n)values 
will therefore increase as n decreases. 

All this of  course limited to strains below )` = 
n 1/2, the maximum possible extension ratio in the 
affine deformation scheme. Nobbs and Bower 
[38], following Purvis and Bower [10], endeavour 
to extend the description of  network orientation 
beyond this limit (presumably for application to 
highly oriented drawn fibres) by making two 
assumptions which although strictly incompatible, 
are useful "simply as a mathematical device". The 
assumptions are: 

(a) Any chain which becomes fully extended 
subsequently rotates as a rigid rod, with an orien- 
tation changing like that of  the line joining two 
points in an affinely deforming continuum, i.e. 
pseudo-affinely; 

(b) The end-to-end vectors of  other chains 
continue both to rotate and to extend according 
to the affine scheme. 

These assumptions lead to the continuations of  
the (P2) and (/4) plots shown as dashed lines in 
Fig. 11. The relevant equations are given in Fig. 
12. 
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Figure 12 Orientation functions for affine deformation, after Nobbs and Bower [ 3 8 ] .  n = number Of links in the chain, 
h = extension ratio. (a) Treloar's closed series approximation. (b) Extension above an extension ratio n 1/2 . 

The pseudo-aff ine  deformat ion  scheme 
In the pseudo-affine deformation scheme the rod- 
like units rotate in a similar way to that required 
in affine deformation, but are unable to change in 
length. The mathematical relationship between the 
affine and pseudo-affine schemes can be clearly 
seen from the integral in Equation A26. Suppose 
that a chain becomes fully extended. All the terms 
(P2n(cos ~)) then become unity, since ~ = 0 for 
all links. For such chains the integral then des- 
cribes simply the orientation of the r-vectors, 
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which are rotating without further change of 
length in accordmnce with the constraints imposed 
by the affinely deforming body in which they are 
"embedded" - i.e. they are deforming pseudo- 
affinely. This is not surprising, since the pseudo- 
affine deformation scheme, notwithstanding its 
origins in crystallite orientation, is in fact only 
describing the orientation of a set of lines drawn 
in an affinely deforming continuum. The pseudo- 
affine orientation functions Can therefore be 
expressed by modifying Equation A26 to give : 



<P2 (cos r 
i 3.c0._i.] 
2 i j 3/2 

1 3s [ .2 3.co._1.] 
<P4 (~176 ~)> { 2 1 + 8 (l-k 21 2 2 (I-k 2) I/2 

30 [1 kc~ ] 3} 
1..k2 (1_k2) 1 / 2 J  + 

Figure 13 Orientation functions for the pseudo-affine deformation scheme, after Ward [2 ], with k = ~.-3/2 

<P~.(cos/))> = P2.(cos q') 
1 

x D(cos ~)  d(cos ~)  (A27) 

where r and q, are now equivalent. 
The analytic expressions for (P2> and (P4> are 

given in Fig. 13, and the behaviour plotted in Fig. 
14. Several contrasts with the affine scheme are 
apparent: 

(i)There are no adjustable parameters: the 
values of  (P2n(cos r depend solely on strain (and 
not, for example, upon n). 

(it) The absolute magnitudes of (P2> and (P4) 
are, at a given strain, much greater than their 
affine counterparts. 

(iii) The magnitude of (P4> is comparable with 
that of  (P2>, coming within a factor of  2 for 
X>~2. 

</92> 
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Figure 14 Orientation functions <P2(cos 0)> and <P4(cos r 
for pseudo-affine deformation, as functions of extension 
ratio. 

Non-u niaxial geomet r ies  
Although the spherical harmonics (P2,> are strictly 
applicable only to uniaxial geometries, it is useful 
to evaluate their analogues in other geometries. 
This may be achieved by modifying the distribution 
function D(q')de/, (i.e. the "pseudo-affine" part of 
the integral). The general expression is given by 
Sasaguri e t  al. [39]: one particularly useful special 
case to consider is the plane strain geometry (Fig. 
15). Here we have a sheet specimen compressed 
between two polished dies, such that the die 
length is long compared to the die width. The con- 
straint imposed by the undeformed material on 
either side of the deformed area prevents motion 
parallel to the length of the dies [40]. Thus in the 
notation of Fig. 15 the strain in the y direction is, 
ideally, zero. For the two specific planes of  interest 

x 

z 

Y 

Figure 15 The plane strain compression geometry: strain 
in the y direction is zero, and the extension ratio is 
usually taken to be greater than i, i.e. 

h = ;~z = 1/hx.  

Birefringence may be measured under load in the z - x  
plane, and after unloading in the z - x  or (more con- 
veniently) the y - z  plane. 
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the general expression for D(cos ~5) simplifies to: 

X 3 d(cos ~) 
D(cos q)) d(cos dp) = 2rr (cos 2 ep + X 2 sin 2 r -3/2 

( y - z  plane) (A28)  

X3 d (cos ~b) 
D(cos ep) d(cos ep) = 2rr( c~ ep + X 4 sin 2 ep) -3/2 

( z - x  plane) (A29) 

By suitable subst i tu t ion in Equat ion  A26 or A27 

we obta in  the "plane strain analogues" of  the 

(P2n(COSr The y - z  expression is equivalent  t o .  

the fzy of  Pick et al. [6]. 
For plane strain deformat ion,  the fractional 

birefringence and the "(P2) analogue" fzy as 

measured by  WAXS will no longer be equal. This 

is because all chain segments will cont r ibute  to 

the measured birefringence in any given plane, 

whereas in WAXS the specimen is rotated about  an 

axis (for fzy the x-axis), so that  the scattering 
vector always lies in the plane normal  to that axis. 

Only those segments which lie in the plane of  the 

scattering vector will contr ibute  to the measured 

WAXS or ienta t ion  parameters.  However, Pick et 

al. show that in the case of  pseudo-affine defor- 

mat ion  the difference be tween fractional birefrin- 

gence and fzy is always small (up to about  5%). 
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